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Pearson sample correlation estimator
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Figure 1. Corr(AX;,AY;)=0.5
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Figure 2: Add i.i.d. noise on the efficient log-prices, p = 0.5
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Jumps, p =0.5
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Time-varying volatility
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Figure 4: Simulate efficient log-prices in Heston model, p = 0.5
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e Epps effect: Reno (2003), Precup and lori (2007), Miinnix et al.
(2011); Téth and Kertész (2007); Chang et al. (2021).
e Correct estimators for various microstructure issues:

o Noise: Andersen et al. (2001), Bandi and Russell (2008); Podolskij and
Vetter (2009), Jacod et al. (2009), Christensen et al. (2010),
Christensen et al. (2013).

o Asynchronous trading: Hayashi and Yoshida (2005), Zhang (2011),
Barndorff-Nielsen et al. (2011).

¢ Rounding error: Delattre and Jacod (1997), Rosenbaum (2009), Li
et al. (2018).

e Jump: Barndorff-Nielsen and Shephard (2004), Barndorff-Nielsen and
Shephard (2007), Boudt et al. (2011).
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Some robust alternatives

e Sign/rank-based estimators

e Quadrant, Blomqvist (1950)
e Kendall, Kendall (1938)

Apply to high-frequency data, see Vander Elst and Veredas (2016).
o Gaussian rank estimator: Boudt et al. (2012).
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Relation between p and g (sign-concordance)

q=Prob[AXAY>0]
§=0.667

Figure 5: Scatter plot of (AX;, AY;), p=10.5
Elliptical distributions (Normal, Student’s t, mixed-Normal):

p=o(q) =sin(m(q - 7))
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Figure 6: Add i.i.d. noise on the efficient log-prices, p = 0.5
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Jumps, p =0.5
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Time-varying volatility
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Figure 8: Scatter plot of (AX;, AY;) generated in Heston model, p = 0.5
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e Pearson is the best in "ideal” case but fragile

e Fragility is measured by influence function (Rousseeuw et al. (2011))
e Quadrant is robust when applied to high-frequency financial data

e Low stability on finite samples

e This paper: Improve efficiency of Quadrant
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Main results

e Introduce subsampled Quadrant (Qs) correlation estimator as a
natural extension of Quadrant estimator.

e Subsampled Quadrant correlation estimator is more accurate than
Pearson estimator while facing microstructure issues.

e Quadrant and Subsampled Quadrant estimators are consistent in
models with time-varying volatility.
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o Observe 2-dimensional log-price processes (X, Y:)._o. then returns
sampled at every second (transaction) are defined as

AXi = X; — Xi_1
fori=1,...,T.
e Sparse sampling: sample at every S-th second (transaction)
AsXis = Xis — X(i-1)s
fori=1,...,nwith n= L%j
e Subsampling (Bartlett sampling):
AsXi = Xi — Xi_s
fori=5,...,T.

e Econometric: Newey West estimator
e High-frequency financial data: Zhang et al. (2005) and Zhang (2011)
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Sparse sampling versus subsampling, S = 3

(a) Sparse sampling: A3X;, i =3,6,9

1 2 3 4 5 6 7 8 9
(b) Subsampling: AsX;, i=3,...,9
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Quadrant, Kendall, and Pearson

(X, Ye){_o are observed prices: with n = | L]
e Quadrant:

S
Q = 0(4q) with o = n Zl l{ASXiSASYiS>0}7

e Kendall:
AP 2
K= o(dr) with Gk = Zr— D LA sXs—AsXs)(As Vis—AsYis)>0}
i<j

e Pearson: ,
Y i1 AsXisAsYis

P =
\/27:1 ASXi25 27:1 As Yé
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Subsampled Quadrant

Subsampled Quadrant estimator (Qs) on returns within a window of width
s moving at lag 1, or all consecutive S-second (S-transaction) returns:

-
N LA 1
Qs = 0(dqs) with Go, = N Z Liasxasy>0};
i=S

where N=T — S.
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Properties

Yiyao Luo (UNC-Chapel Hill) November 18, 2022 19 / 61



For fixed S, n = L%J then as T — oo,

V(e = p) <5 N(O,Vu), #=P,Q.K, Qs
where
o Vp=(1-p?)?
o Vo= (7T — arcsin? p)(1 — p?)
o Vi = (j — 4arcsin?(4))(1 — p?)

o Vo, = 1= p [— — arcsin® p + 22,,;11 arcsin2(%) - arcsinz(p%)]
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Asymptotics
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Influence function

The influence function of a statistical functional R at distribution H is
defined as

IF((x0, ¥0), R, H) = Iin}) (A—e)H +e (Xo,yo)) (H)
E— €

where A, ) is a Dirac measure of mass at (xo, yo).
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Influence function

e Pearson: 2 2
X5 +
IF((XOaYO), Rp, CDp) = Xoyo — (oTyo)p

e Kendall:
IF((X07.y0) RK’CD ) =2msy/1— p2><

20, (\/25 1’ \/25 1) (D(\/25 1) (D(\/zys0 1 —q]
e Quadrant and Subsampled Quadrant:
IF((x0, ¥0), Rq, ® —7T5\/1—P X
20, (s, ) 0( )~ e( ) 11— d]
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(Xt, Yt)te[o,T] be a bivariate It6 semimartingale process characterized by

t t
(Xt> - (XO) + / audu + / o4 dW,
Yt Yo 0 0
where a = (ay, ay) is a locally bounded predictable drift function and
o — ox O
- \0 o

is a cadlag volatility process. W denotes a 2-dimensional Wiener process
and Corr(dW, dW,) = p.
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The cadlag process o satisfies, for any € > 0, there is § > 0 such that for
any t1,to € [0, T] and 0 < tp — t; < &

ax w0y, udu

—1
‘\/ t202 ydu t202 ,du

<e.

Theorem

Under the above representation of (X, Y) and Assumption, Q and Qs are
consistent to p.
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Inconsistency

e Pearson: -
P£>p>< fo Ox,u0y,udU
\/fo 02 ,du [ a§7udu
e Kendall:
PI‘Ob[(AsxiS — A5Xj5)(A5 Y,'S — AS YJ5) > 0]
1 1
_1 (oGl i i 1
- arcsin(pG(o,i,j)) + >
o' ; J f(i‘s—l)s o‘X,qu’udu_Fde Ox,uCy,udu
) b \/(f ,udU+fé-S_1 du)(fl s yudu—l-fo 1)s 73,udu)
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Noise

We observe efficient prices, (X}, Y;*),contaminated by noise

X\ _ (%Y
v.) T \vy) T
where (€t)¢cjo, 7] is 2-dimensional i.i.d. process with E[e;] = 0 and

E[Gtﬁé] =V,
Observed increment over [(i — 1)S, iS):

AsXis\ Ale-’g L
(AS Y/S> = <AS Y:;‘ + €s €(i-1)S
fori=1,...,n.

The noise term €;s — €(j_1)s:
e flips the signs of AsXs and AsYis;

e drives the estimated correlation to zero.
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Observing stale prices

e Rounding error: observed prices are rounded to one cent: for efficient

(%) - (B¥a)
with @ = 0.01.

e Large bias in volatility estimation for Pearson estimator
e Zero returns have no information about sign concordance for Quadrant

prices X; we have

estimators
e Zero returns flip the rank between two returns on one asset.

e Asynchronous trading: prices are not updated simultaneously.

e Need to synchronize
e Induce bias (Epps effect).
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Simulation
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Heston model

We simulate log-prices as, for e = X, Y

de; = pdt + ordWs
dos . = (52 — 02,)dt + 504 :dBa
020 ~ [(2ke52 /52, 52 /2ks)
where corr(dW, ¢, dB, +) = 0 and corr(dWs ¢, dW, ¢) = p.
The model is calibrated as in Ait-Sahalia et al. (2010):

Table 1: Parameters calibration

n 72 ks 0

X 005 016 3 08 -0.6
Y 003 009 2 05 -0.75

In a trading day, we let dt be one second and generate (X, Y;) for
t=0,..., T with T =23400.
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Correlation signature plot (Heston)
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Microstructure issues

e Generate latent log-prices:
dX{ = 0xdW, ; and dY{ = o, dW, ;

where corr(dW ¢, dW, +) = p and (ox,0,) = (0.15,0.45).
¢ Independent noise:

Xe=X{ +exrand Yo=Y +e,¢

where €4+ ~ N(0,w?) and w? = €2,/ T-1 3T &%  with €2 =0.001,

for e = x, y.
e Rounding errors: round off the observed prices with tick size one cent.
e Asynchronous trading: for e = X, Y

. {Lexp(ot)/O .01] x 0.01 with probability pt*
oy —

& 1 otherwise

where (py', p}") = (0.8,0.5).
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Synchronizing observation

e Time sampling scheme:

o Tick time sampling (TTS): {7 x} o=, are the timestamps at which the
asset X is observed. Use {1/} = {mx} o0 U{Ty’k}zlio as sampling
grid. [ri_1,7;] refers to a unit sampling interval, and log-returns over it
are:

IN S
e Synchronization: i-th observation of asset j

e Previous tick (PT): . .
XT,‘ = X'rx,k

where k = max(s|7x s < 7).
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Correlation signature plot (constant volatility): p = 0.5
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Microstructure issues

Table 2: Mean squared errors of correlation estimators on returns contaminated
by noise, rounding error, and asynchronous trading (x1072).

S 1 5 10 15 30 60 120 180 300 600
p=0.25

Q 6.13 549 465 401 285 192 171 213 316 550

K 6.06 545 459 393 265 158 1.06 112 151 277

Qs 545 455 384 251 135 0.71 0.64 085 1.74
P 6.07 5.45 4.57 3.92 2.62 1.54 1.01 1.02 1.33 2.39
p=05

Q 2450 21.82 18.22 1543 10.19 5.67 3.29 2.80 294 453
K 2422 21.74 18.15 1535 10.01 5.34 2.58 1.81 1.51 2.11

Qs 21.79 18.09 15.29 9.90 5.14 2.24 1.40 1.04 1.35
P 2429 21.72 18.13 1533 9.95 5.28 2.50 1.70 1.36 1.80
p=0.75

Q 55.13 49.07 40.97 3450 2250 1199 5.58 3.88 3.04 3.22

K 5450 48.92 40.80 3439 2224 1168 5.04 3.01 1.75 1.37

Qs 48.99 40.76 3437 2222 1148 4.77 2.70 1.37 0.92

P 54.64 48.89 40.76 34.34 2218 11.62 4.96 291 1.61 1.12
T = 23400 in 5000 replications.
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We add jumps on the log-prices after noise
X X
() =) +ar T
vt Yt s<t

Js includes one individual jump on each asset or a cojump. Jump size is
uniformly drawn from [—2, —1] U[1, 2]/v/2.

Yiyao Luo (UNC-Chapel Hill)
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Bias: microstructure issues and individual jumps
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microstructure issues and cojump
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Microstructure issues and individual jump

Table 3: Mean squared errors of correlation estimators on returns generated in
Levy model with microstructure issues and jumps (x1072).

S 1 5 10 15 30 60 120 180 300 480
p=0.25

Q 5.99 5.46 4.63 4.00 2.80 1.94 1.77 2.19 3.22 4.90

K 6.06 545 456 391 263 162 113 121 160 239

Qs 541 453 382 249 136 0.76 0.70 093 1.48
P 6.15 597 586 582 577 588 6.05 629 6.67 7.65
p=05

Q 2389 21.61 18.19 1541 1025 570 332 289 326 4.53
K 2423 21.70 18.14 1537 10.11 549 281 2.09 1.97 252

Qs 21.61 18.07 1522 987 520 237 159 1.25 1.46
P 2457 2379 23.27 23.01 2278 2263 2259 2287 23.48 24.28
p=0.75

Q 53.67 48.64 40.82 34.44 2253 1206 571 412 329 3.63
K 54.47 48.83 40.78 34.44 2246 1191 543 353 238 231
Qs 48.56 40.59 34.25 22,18 1157 5.00 2.99 1.74 1.43
P 55.29 53.50 52.27 51.68 5095 50.62 50.49 50.81 51.19 51.49
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Microstructure issues and cojump

Table 4: Mean squared errors of correlation estimators on returns generated in
Levy model with microstructure issues and jumps (x1072).

S 1 5 10 15 30 60 120 180 300 480
p=0.25

Q 5.98 5.48 4.59 3.94 2.73 1.78 1.65 1.98 2.92 5.76

K 6.05 544 451 384 251 139 086 088 129 260

Qs 541 451 378 243 126 0.62 0.54 073 1.62
P 390 7.58 15.85 21.59 30.35 36.75 40.48 41.97 43.14 44.14
p=05

Q 23.87 21.63 18.18 1536 10.05 555 298 247 278 4.43
K 2420 21.70 18.10 1524 9.81 507 226 142 1.20 1.77

Qs 21.58 18.01 1517 9.74 499 208 1.23 0.85 1.20
P 15.25 6.00 5.57 7.17 1091 14.17 16.32 17.16 17.87 18.46
p=0.75

Q 53.73 48.66 40.69 3441 2230 11.89 543 361 2.67 257
K 5450 48.84 40.65 34.28 2203 11.35 4.71 2.65 1.33 0.95
Qs 48.61 40.58 34.15 2198 11.29 464 255 1.23 0.73
P 39.12 16.08 6.82 426 264 274 3.25 346 365 3.79
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Correlation signature plot (Heston with microstructure

issues)
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Heston with microstructure issues

Table 5: Mean squared errors of correlation estimators on returns contaminated
by rounding error and asynchronous trading (x10~2).

S 1 5 10 15 30 60 120 240 420 840
p=0.25

Q 6.05 561 501 441 345 253 221 291 460 8.68

K 6.09 560 492 432 320 209 147 153 223 415

Qs 558 487 427 3.09 191 110 085 1.16 243
P 6.11 5.59 4.90 4.28 3.14 2.00 1.38 1.40 1.95 3.52
p=05

Q 2412 2228 1950 17.09 1258 8.10 5.03 3.73 434 6.79
K 2437 2233 19.39 16.94 1218 750 420 259 240 3.37

Qs 2227 19.37 16.97 1221 7.44 3.91 2.01 1.50 2.02
P 2442 2230 1930 16.82 1192 7.23 3.98 2.46 2.25 2.97
p=0.75

Q 54.27 50.07 4357 38.11 2754 17.12 9.35 4.99 3.66 4.39

K 54.84 50.17 4338 37.81 26.88 16.12 8.34 4.03 2.59 2.39

Qs 50.05 43.44 38.04 27.22 16.44 8.36 3.77 2.02 1.45

P 54.94 50.10 43.22 3750 26.30 1543 7.90 3.84 2.52 2.16
T = 23400 in 5000 replications.
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Empirical
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Data Description

22 stocks:
e S&P 500 constituents
e 11 industry sectors
e Sampled from Jan 1, 2015 till Dec 31, 2021
e Transaction data from NYSE Trade and Quote (TAQ) database

Yiyao Luo (UNC-Chapel Hill) November 18, 2022 45 / 61



Descriptive summary

Table 6: Descriptive statistics for the selected S&P 500 stocks and S&P 500 ETF.

Sector Ticker N E[r; — 7i_1] #Zero 52 v
SPY 12056 2.275 3488 1.71 x 109 6.57 x 10~ °
- D 3137 8.037 1114 1.92 x 108 1.37 x 1074
Utilities _a —4
DUK 3329 7.467 1132 1.32 x 10 1.35 x 10
AMT 2492 9.754 476 3.92 x 107° 4.9 x 1074
Real estate _8 _4
PLD 2606 9.771 879 3.16 x 10 1.69 x 10
) LYB 2804 9.226 664 5.28 x 1078 3.33 x 1074
Materials _8 —4
NEM 4056 6.670 1659 3.55 x 10 3.77 x 10
) AAPL 11706 2271 3067 6.19 x 10~° 1.86 x 10~
Information Technology 7 —4
AMD 6139 14.865 2134 2.70 x 10 8 x 10
) AAL 4088 6.829 1692 5.43 x 1078 7.42 x 1074
Industrials _g _4
UNP 3715 6.862 868 2.40 x 10 1.85 x 10
INJ 5523 4571 1721 8.58 x 107 1.08 x 107*
Health Care _8 —4
MRK 5119 5.054 2090 1.11 x 10 1.37 x 10
- JPM 7977 3.217 2887 8.76 x 107° 1.78 x 107*
Financials —8 —4
WFC 5772 4.495 2689 1.29 x 10 2.28 x 10
HAL 4501 5.564 2074 4.79 x 1078 6.08 x 104
Energy —9 —4
XOM 6794 3.831 2753 9.94 x 10 2 x 10
Consumer Staples PG 5271 4.857 1962 8.44 x 1077 1.09 x 10~*
P WMT 5654 4.461 2116 8.47 x 10~° 1.18 x 1074
Consumer Discretionar TSLA 7485 5.121 557 5.17 x 1078 7x 1074
Y AMZN 5869 5.028 303 2x 1078 2.11 x 1074
Communication Services DIS 6273 4.193 1819 1.01 x 1078 1.71 x 1074
FB 9225 2.805 1891 1.01 x 108 2.38 x 104
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Information Technology: correlation estimates

SPY v.s. AMD
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Materials: correlation estimates
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Recall Capital Asset Pricing Model (CAPM):
Er, = rr+ B(]ER — rf)

where
e [Er;: expected return on asset i
o rr: risk-free rate
o ER: expected market return

Andersen, Thyrsgaard, and Todorov (2021) (ATT) demonstrate variation
in 8 within a trading day.
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Intraday time-varying 3

125 [—]
0.8
1.20 0.7
115 0.6
1.10
0.5
1.05
_ 0.4
10:0010:3011:0011:3012:00 12:30 13:00 13:30 14:00 14:30 15:00 15:30 16:00 10:00 10:30 11:00 11:30 12:00 12:30 13:00 13:30 14:00 14:30 15:00 15:30 16:00
(a) CAT v.s. SPY (b) JNJ v.s. SPY

Figure 16: Average intraday ('s for 1 minute returns of stocks, Caterpillar and
Johnson&Johnson, over years 2015 - 2021. B's are estimated using 30-minute
window.
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Intraday time-varying 3

Let Y; and X; be prices of asset of interest and market respectively.
ATT estimates intraday (3;'s using window over /S seconds, for
T=1,...,n

.
Doier— 131 DBsXisAsYis 1 agxis|<ve|As Vis|<vy )
T 2
Zi:r—l—i—l A5Xi51{|As Yis|<vy,|AsXis|<vx}

/8’7':

where
* AsXis = Xis — X(i—1)s and AsYis = Yis — Y(i_1)s
® v and v, are thresholds to avoid jumps.
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Intraday correlation

Note
Oy,r

/BT:pTX

X, T

e p, is the correlation between asset Y and market X, estimated with
Quadrant, Kendall, subsampled Quadrant, and Pearson.
e Subsampled Quadrant uses all possible returns over S sampling

intervals
AsXi = Xi — Xi_sand AsY; = Y; - Y_s

fori=(r—1+1)S,...,75.
e Quadrant, Kendall, and Pearson use non-overlapping returns over S
sampling intervals.
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Intraday relative volatility

° ZV—T is the relative volatility between asset Y and market X.

e Realized variance:

T 2
\/Z;_T_/H AsYigliasxis|<v.|asYis|<v}

T 2
ier—1+1 DsX51{|asxis|<vi|As Vis| <y }

e Local relative volatility:

)
221415 B Yill{asvii<v lasxi<wl

TS
21115 1A XilL{asvii<vy | asXi <we)
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Intraday time-varying [

10:30 11:00 11:30 12:00 12:30 13:00 13:30 14:00 14:30 15:00 15:30 16:00 10:30 11:00 11:30 12:00 12:30 13:00 13:30 14:00 14:30 15:00 15:30 16:00

(a) AAPL v.s. SPY (b) AMD v.s. SPY

Figure 17: Average 3 estimates by time of day using returns in the previous
one-hour window with S = 180.
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Intraday time-varying correlation

11:00 11:35 12:10 12:45 13:20 13:55 14:30 15:05 15:40

11:00 11:35 12:10 12:45 13:20 13:55 14:30 15:05 15:40

(a) AAPL v.s. SPY (b) AMD v.s. SPY

Figure 18: Average (3 estimates by time of day using returns in the previous
one-hour window with § = 180.

Relative volatility
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Intraday time-varying [

10:30 11:00 11:30 12:00 12:30 13:00 13:30 14:00 14:30 15:00 15:30 16:00 10:30 11:00 11:30 12:00 12:30 13:00 13:30 14:00 14:30 15:00 15:30 16:00

(a) LYB v.s. SPY (b) NEM v.s. SPY

Figure 19: Average [ estimates by time of day using returns in the previous
one-hour window with S = 180.
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Intraday time-varying correlation

11:00 11:35 12:10 12:45 13:20 13:55 14:30 15:05 15:40 11:00 11:35 12:10 12:45 13:20 13:55 14:30 15:05 15:40

(a) LYB v.s. SPY (b) NEM v.s. SPY

Figure 20: Average 3 estimates by time of day using returns in the previous
one-hour window with S = 180.
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Positive Definiteness Correction
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High dimensional case (d > 2)

e Estimate correlation matrix by plugging bivariate correlations with
Quadrant, Kendall, Subsampled Quadrant estimators

e Cannot guarantee positive definiteness

e Compare four correction methods
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Correction for positive definiteness

e Higham's method algorithm (Higham (2002)): find the nearest valid
correlation matrix in terms of Frobenius norm by projection.

¢ Quadratically convergent Newton method: see Qi and Sun (2006).

e Maximization of composite quasi-likelihood:

e Composite quasi-likelihood of a correlation matrix C based on matrix
estimate R is defined as follows

QLike®™™P(C) = — - Z log(1—C}) - > 1= Ry

cv 1 -C2
i<j i<j 1

e We find the nearest correlation matrix to R by

VER"(U Y QLike®™?(C(7)), where v = vech(log(C))

C is recovered from a given - using the result in Archakov and Hansen
(2021).
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Conclusion

e Introduce robust correlation estimator, subsampled Quadrant
estimator.

e Subsampled Quadrant estimator is most accurate while facing
microstructure issues and is consistent as Quadrant in time-varying
volatility models.

e Quadrant, Kendall, and subsampled Quadrant estimators are more
robust to the presence of jumps.

e Empirically, find different converging patterns between Quadrant like
correlation estimates and others as lowering sampling frequency and
compare the estimated intraday time-varying S3.
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X1 =101.005, X, =101.001, X3 =100.998
then

log(X1) — log(X2) > log(X2) — log(X3)
After rounding
X{ =101, X; =101, X3 =100.99

and
log(X{) — log(X3) =0 < log(X2)" — log(X3)

Yiyao Luo (UNC-Chapel Hill)
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Linear statistics defined on subseries

Consider subseries Z; = (Xi, ..., Xi+m—1) and suppose that T; = t(Z;) is
an estimate for some parameter in the distribution of X;'s.

To approximate the distribution of Ty = Zf\lzl Ti/N, we may apply
bootstrap resampling on {T;},’-V:1 as applied in the moving blocks sampling
scheme by Kiinsch (1989), Liu and Singh (1992), and Politis and Romano
(1993).

Suppose that T;(w) is the periodogram evaluated at w based on data Z;,
then Ty(w) is approximately equal to Bartlett's Kernel estimate of f(w).
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Intraday relative volatility
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(b) JNJ v.s. SPY
Figure 21: Plot the average intraday relative volatility for 1 minute returns of
stocks, Caterpillar, Johnson&Johnson, and market, S&P 500, over year 2015 till
2021. Relative volatility is estimated using 30-minute window.
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Intraday relative volatility
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Intraday relative volatility
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Correction for positive definiteness

¢ Higham (2002)’s algorithm:
Define sets
S={A=AecR¥: Ais psd.},

U={A=A R, =1}.
Project a symmetric matrix A onto U with respect to W-norm:
Py(A) = A— W ldiag(;)W 1
where 0 = (W~! o W~1)"ldiag(A — /).
Project A onto S with respect to W-norm:
Ps(A) = W_1/2[(W1/2AW1/2)+] w-1/2

where A, = Qdiag(max();,0))Q’.
To find the nearest matrix to A at the intersection of S and U, we
repeat the operation

A < Py(Ps(A)).
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Correction for positive definiteness

e Quadratically convergent Newton method:
Using this method to solve problem:

1 A
in =||R — C||?
min Z||R — ||
st. CeC=5SAU

where || - || denotes the Frobenius norm, see Qi and Sun (2006).

e Using the similar method to solve the problem of H-weighted type:

1 .
min 2 ||H o (R — X)|?
st.CeC

where o denotes the Hadarmard product, and H is symmetric with
nonnegative entries.
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Correction for positive definiteness

e Example: Consider d = 5,

1 0.0005
0.098 1 0.121

Ry=| 0288 0.729 1 ,eig=| 1.132
0.593 —0.504 —0.031 1 1.651

0.314 —0.244 —0543 —0.157 1 2.097

1 —0.002

0.044 1 0.101

Ro=| 0309 0.675 1 , eig = 1.087
0.657 —0.525  0.044 1 1.775

0.249 —0.200 —0.593 —0.181 1 2.038

Higham's algorithm:

1 0.010
0.019 1 0.100
Riigham = | 0.306  0.675 1 ,eig=| 1.076
0.653 —0.525 0.044 1 1.774
0.246 —0.200 —0.593 —0.181 1 2.040
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Correction for positive definiteness

e Example (cont’):

1 0.0005
0.098 1 0.121

Ro=| 0288 0.729 1 Jeig=| 1.132
0.593 —0.504 —0.031 1 1.651

0.314 —0.244 —0.543 —0.157 1 2.097

1 —0.002

0.044 1 0.101

Ro=| 0309 0.675 1 , eig = 1.087
0.657 —0.525 0.044 1 1.775

0.249 —0.200 —0.593 —0.181 1 2.038

Maximizing composite QLike:

1 0.0001
0.044 1 0.101
Reomp. = | 0.309  0.675 1 , eig = 1.086
0.656 —0.525  0.045 1 1.775
0.248 —0.199 —0.593 —0.180 1 2.038
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Correction for positive definiteness

Table 7: Comparison the accuracy and computation costs of corrected Quadrant
and Kendall estimators via four methods (n = 5)

Loss/Time Higham Comp. QLike  Newton H-Newton

Quadrant
Frobenius 0.0856 0.0841 0.0839 0.0840
Stein's 4.6339 4.1876 4.2304 4.2322
Time (sec) 0.0569 6.7361 0.0007 0.0026
Kendall
Frobenius 0.0573 0.0533 0.0533 0.0533
Stein's 4.2331 0.8381 0.9210 0.9210
Time (sec) 2.1019 6.9426 0.0005 0.0018
Pearson
Frobenius 0.0504
Stein's 0.1648

Frobenius norm: ||A||r = \/Zi,j a?j,
Stein's loss function: L(Ii’) = tr(R(;lﬁ’) — Iog(\Roflﬁ’\) —d.
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