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Pearson sample correlation estimator

P =

∑n
i=1 ∆X i∆Y i√∑n

i=1 ∆X 2
i

∑n
i=1 ∆Y 2

i

Figure 1: Corr(∆X i ,∆Y i ) = 0.5
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Noise

Figure 2: Add i.i.d. noise on the efficient log-prices, ρ = 0.5
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Jumps, ρ = 0.5

(a) Individual Jump (b) CoJump
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Time-varying volatility

Figure 4: Simulate efficient log-prices in Heston model, ρ = 0.5

Yiyao Luo (UNC-Chapel Hill) November 18, 2022 5 / 61



Epps Effect
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Literature

• Epps effect: Renò (2003), Precup and Iori (2007), Münnix et al.
(2011); Tóth and Kertész (2007); Chang et al. (2021).

• Correct estimators for various microstructure issues:
• Noise: Andersen et al. (2001), Bandi and Russell (2008); Podolskij and

Vetter (2009), Jacod et al. (2009), Christensen et al. (2010),
Christensen et al. (2013).

• Asynchronous trading: Hayashi and Yoshida (2005), Zhang (2011),
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et al. (2018).

• Jump: Barndorff-Nielsen and Shephard (2004), Barndorff-Nielsen and
Shephard (2007), Boudt et al. (2011).
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Some robust alternatives

• Sign/rank-based estimators
• Quadrant, Blomqvist (1950)
• Kendall, Kendall (1938)

Apply to high-frequency data, see Vander Elst and Veredas (2016).

• Gaussian rank estimator: Boudt et al. (2012).
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Relation between ρ and q (sign-concordance)

q=Prob[ X Y>0]
q=0.667
Q=0.501

Figure 5: Scatter plot of (∆Xi ,∆Yi ), ρ = 0.5

Elliptical distributions (Normal, Student’s t, mixed-Normal):

ρ = %(q) = sin(π(q − 1

2
))
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Noise

Figure 6: Add i.i.d. noise on the efficient log-prices, ρ = 0.5
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Jumps, ρ = 0.5

(a) Individual Jump (b) CoJump
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Time-varying volatility

Figure 8: Scatter plot of (∆Xi ,∆Yi ) generated in Heston model, ρ = 0.5
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Motivation

• Pearson is the best in ”ideal” case but fragile
• Fragility is measured by influence function (Rousseeuw et al. (2011))

• Quadrant is robust when applied to high-frequency financial data
• Low stability on finite samples

• This paper: Improve efficiency of Quadrant
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Main results

• Introduce subsampled Quadrant (Qs) correlation estimator as a
natural extension of Quadrant estimator.

• Subsampled Quadrant correlation estimator is more accurate than
Pearson estimator while facing microstructure issues.

• Quadrant and Subsampled Quadrant estimators are consistent in
models with time-varying volatility.
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Notation

• Observe 2-dimensional log-price processes (Xt ,Yt)
T
t=0, then returns

sampled at every second (transaction) are defined as

∆Xi = Xi − Xi−1

for i = 1, . . . ,T .

• Sparse sampling: sample at every S-th second (transaction)

∆SXiS = XiS − X(i−1)S

for i = 1, . . . , n with n = bTS c.
• Subsampling (Bartlett sampling):

∆SXi = Xi − Xi−S

for i = S , . . . ,T .
• Econometric: Newey West estimator
• High-frequency financial data: Zhang et al. (2005) and Zhang (2011)
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Sparse sampling versus subsampling, S = 3

(a) Sparse sampling: ∆3Xi , i = 3, 6, 9

(b) Subsampling: ∆3Xi , i = 3, . . . , 9
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Quadrant, Kendall, and Pearson

(Xt ,Yt)
T
t=0 are observed prices: with n = bTS c

• Quadrant: Figure

Q = %(q̂Q) with q̂Q =
1

n

n∑
i=1

1{∆SXiS∆SYiS>0},

• Kendall:

K = %(q̂K ) with q̂K =
2

n(n − 1)

∑
i<j

1{(∆SXiS−∆SXjS )(∆SYiS−∆SYjS )>0}

• Pearson:

P =

∑n
i=1 ∆SXiS∆SYiS√∑n

i=1 ∆SX
2
iS

∑n
i=1 ∆SY

2
iS
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Subsampled Quadrant

Subsampled Quadrant estimator (Qs) on returns within a window of width
s moving at lag 1, or all consecutive S-second (S-transaction) returns:

QS = %(q̂QS
) with q̂QS

=
1

N

T∑
i=S

1{∆SXi∆SYi>0},

where N = T − S .
Appendix

Yiyao Luo (UNC-Chapel Hill) November 18, 2022 18 / 61



Properties
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Asymptotics

For fixed S , n = bTs c, then as T →∞,

√
n(• − ρ)

d−→ N(0,V•), • = P,Q,K ,QS

where

• VP = (1− ρ2)2

• VQ = (π
2

4 − arcsin2 ρ)(1− ρ2)

• VK = (π
2

9 − 4 arcsin2(ρ2 ))(1− ρ2)

• VQS
= 1−ρ2

S [π
2

4 − arcsin2 ρ+ 2
∑S−1

h=1 arcsin2(S−hS )− arcsin2(ρS−h
S )]
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Asymptotics
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Influence function

The influence function of a statistical functional R at distribution H is
defined as

IF((x0, y0),R,H) = lim
ε→0

R((1− ε)H + ε∆(x0,y0))− R(H)

ε

where ∆(x0,y0) is a Dirac measure of mass at (x0, y0).
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Influence function

• Pearson:

IF((x0, y0),RP ,Φρ) = x0y0 − (
x2

0 + y2
0

2
)ρ

• Kendall:

IF((x0, y0),RK ,Φρ) = 2πs
√

1− ρ2×
[2Φρ( x0√

2S−1
, y0√

2S−1
)− Φ( x0√

2S−1
)− Φ( y0√

2S−1
) + 1− q]

• Quadrant and Subsampled Quadrant:

IF((x0, y0),RQ ,Φρ) = πS
√

1− ρ2×
[2Φρ( x0√

S−1
, y0√

S−1
)− Φ( x0√

S−1
)− Φ( y0√

S−1
) + 1− q]
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ρ = 0.5 and S = 5

Yiyao Luo (UNC-Chapel Hill) November 18, 2022 24 / 61



Consistency

(Xt ,Yt)t∈[0,T ] be a bivariate Itô semimartingale process characterized by(
Xt

yt

)
=

(
X0

Y0

)
+

∫ t

0
audu +

∫ t

0
σudWu

where a = (ax , ay ) is a locally bounded predictable drift function and

σ =

(
σx 0
0 σy

)
is a cadlag volatility process. W denotes a 2-dimensional Wiener process
and Corr(dWx , dWy ) = ρ.
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Consistency

Assumption

The cadlag process σ satisfies, for any ε > 0, there is δ > 0 such that for
any t1, t2 ∈ [0,T ] and 0 < t2 − t1 < δ∣∣∣∣∣

∫ t2

t1
σx ,uσy ,udu√∫ t2

t1
σ2
x ,udu

∫ t2

t1
σ2
y ,udu

− 1

∣∣∣∣∣ < ε.

Theorem

Under the above representation of (X ,Y ) and Assumption, Q and QS are
consistent to ρ.
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Inconsistency

• Pearson:

P
p→ ρ×

∫ T
0 σx ,uσy ,udu√∫ T

0 σ2
x ,udu

∫ T
0 σ2

y ,udu
.

• Kendall:

Prob[(∆SXiS −∆SXjS)(∆SYiS −∆SYjS) > 0]

=
1

π
arcsin(ρG (σ, i , j)) +

1

2

G (σ, i , j) =

∫ iS
(i−1)S σx,uσy,udu+

∫ jS
(j−1)S

σx,uσy,udu√
(
∫ iS

(i−1)S σ
2
x,udu+

∫ jS
(j−1)S

σ2
x,udu)(

∫ iS
(i−1)S σ

2
y,udu+

∫ jS
(j−1)S

σ2
y,udu)
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Noise

We observe efficient prices, (X ∗t ,Y
∗
t ),contaminated by noise(

Xt

Yt

)
=

(
X ∗t
Y ∗t

)
+ εt

where (εt)t∈[0,T ] is 2-dimensional i.i.d. process with E[εt ] = 0 and
E[εtε

′
t ] = Ψ.

Observed increment over [(i − 1)S , iS):(
∆SXiS

∆SYiS

)
=

(
∆SX

∗
iS

∆SY
∗
iS

)
+ εiS − ε(i−1)S

for i = 1, . . . , n.
The noise term εiS − ε(i−1)S :

• flips the signs of ∆SXiS and ∆SYiS ;

• drives the estimated correlation to zero.
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Observing stale prices

• Rounding error: observed prices are rounded to one cent: for efficient
prices Xt we have (

Xt

Yt

)
=

(
αbX ∗t /αc
αbY ∗t /αc

)
with α = 0.01.

• Large bias in volatility estimation for Pearson estimator
• Zero returns have no information about sign concordance for Quadrant

estimators
• Zero returns flip the rank between two returns on one asset. Example

• Asynchronous trading: prices are not updated simultaneously.
• Need to synchronize
• Induce bias (Epps effect).
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Simulation
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Heston model

We simulate log-prices as, for • = X ,Y

d•∗t = µdt + σtdW•,t

dσ2
•,t = κ(σ̄2

• − σ2
•,t)dt + sσ•,tdB•,t

σ2
•,0 ∼ Γ(2κ•σ̄

2
•/s

2, s2
•/2κ•)

where corr(dW•,t , dB•,t) = % and corr(dW•,t , dW•,t) = ρ.
The model is calibrated as in Äıt-Sahalia et al. (2010):

Table 1: Parameters calibration

µ σ̄2 κ s %
X 0.05 0.16 3 0.8 -0.6
Y 0.03 0.09 2 0.5 -0.75

In a trading day, we let dt be one second and generate (Xt ,Yt) for
t = 0, . . . ,T with T = 23400.
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Correlation signature plot (Heston)
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Microstructure issues

• Generate latent log-prices:

dX ∗t = σxdWx ,t and dY ∗t = σydWy ,t

where corr(dWx ,t , dWy ,t) = ρ and (σx , σy ) = (0.15, 0.45).

• Independent noise:

Xt = X ∗t + εx ,t and Yt = Y ∗t + εy ,t

where ε•,t ∼ N(0, ω2) and ω2 = ξ2
√

T−1
∑T

i=1 σ
4
•,i with ξ2 = 0.001,

for • = x , y .

• Rounding errors: round off the observed prices with tick size one cent.

• Asynchronous trading: for • = X ,Y

•̃t =

{
bexp(•t)/0.01c × 0.01 with probability ptr•
•̃t−1 otherwise

where (ptrx , p
tr
y ) = (0.8, 0.5).
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Synchronizing observation

• Time sampling scheme:

• Tick time sampling (TTS): {τx,k}Nx

k=0 are the timestamps at which the

asset X is observed. Use {τi}Ni=0 = {τx,k}Nx

k=0

⋃
{τy ,k}

Ny

k=0 as sampling
grid. [τi−1, τi ] refers to a unit sampling interval, and log-returns over it
are:

∆X̃i = X̃τi − X̃τi−1

• Synchronization: i-th observation of asset j
• Previous tick (PT):

X̃τi = X̃τx,k

where k = max(s|τx,s ≤ τi ).
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Correlation signature plot (constant volatility): ρ = 0.5
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Microstructure issues

Table 2: Mean squared errors of correlation estimators on returns contaminated
by noise, rounding error, and asynchronous trading (×10−2).

S 1 5 10 15 30 60 120 180 300 600
ρ = 0.25

Q 6.13 5.49 4.65 4.01 2.85 1.92 1.71 2.13 3.16 5.50
K 6.05 5.45 4.59 3.93 2.65 1.58 1.06 1.12 1.51 2.77

Qs 5.45 4.55 3.84 2.51 1.35 0.71 0.64 0.85 1.74
P 6.07 5.45 4.57 3.92 2.62 1.54 1.01 1.02 1.33 2.39

ρ = 0.5
Q 24.50 21.82 18.22 15.43 10.19 5.67 3.29 2.80 2.94 4.53
K 24.22 21.74 18.15 15.35 10.01 5.34 2.58 1.81 1.51 2.11

Qs 21.79 18.09 15.29 9.90 5.14 2.24 1.40 1.04 1.35
P 24.29 21.72 18.13 15.33 9.95 5.28 2.50 1.70 1.36 1.80

ρ = 0.75
Q 55.13 49.07 40.97 34.50 22.50 11.99 5.58 3.88 3.04 3.22
K 54.50 48.92 40.80 34.39 22.24 11.68 5.04 3.01 1.75 1.37

Qs 48.99 40.76 34.37 22.22 11.48 4.77 2.70 1.37 0.92
P 54.64 48.89 40.76 34.34 22.18 11.62 4.96 2.91 1.61 1.12

T = 23400 in 5000 replications.
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Jumps

We add jumps on the log-prices after noise(
Xt

yt

)
=

(
X ∗t
y∗t

)
+ εt +

∑
s≤t

Js

Js includes one individual jump on each asset or a cojump. Jump size is
uniformly drawn from [−2,−1]

⋃
[1, 2]/

√
2.
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Bias: microstructure issues and individual jumps
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Bias: microstructure issues and cojump
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Microstructure issues and individual jump

Table 3: Mean squared errors of correlation estimators on returns generated in
Levy model with microstructure issues and jumps (×10−2).

S 1 5 10 15 30 60 120 180 300 480
ρ = 0.25

Q 5.99 5.46 4.63 4.00 2.80 1.94 1.77 2.19 3.22 4.90
K 6.06 5.45 4.56 3.91 2.63 1.62 1.13 1.21 1.60 2.39

Qs 5.41 4.53 3.82 2.49 1.36 0.76 0.70 0.93 1.48
P 6.15 5.97 5.86 5.82 5.77 5.88 6.05 6.29 6.67 7.65

ρ = 0.5
Q 23.89 21.61 18.19 15.41 10.25 5.70 3.32 2.89 3.26 4.53
K 24.23 21.70 18.14 15.37 10.11 5.49 2.81 2.09 1.97 2.52

Qs 21.61 18.07 15.22 9.87 5.20 2.37 1.59 1.25 1.46
P 24.57 23.79 23.27 23.01 22.78 22.63 22.59 22.87 23.48 24.28

ρ = 0.75
Q 53.67 48.64 40.82 34.44 22.53 12.06 5.71 4.12 3.29 3.63
K 54.47 48.83 40.78 34.44 22.46 11.91 5.43 3.53 2.38 2.31

Qs 48.56 40.59 34.25 22.18 11.57 5.00 2.99 1.74 1.43
P 55.29 53.50 52.27 51.68 50.95 50.62 50.49 50.81 51.19 51.49
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Microstructure issues and cojump

Table 4: Mean squared errors of correlation estimators on returns generated in
Levy model with microstructure issues and jumps (×10−2).

S 1 5 10 15 30 60 120 180 300 480
ρ = 0.25

Q 5.98 5.48 4.59 3.94 2.73 1.78 1.65 1.98 2.92 5.76
K 6.05 5.44 4.51 3.84 2.51 1.39 0.86 0.88 1.29 2.60

Qs 5.41 4.51 3.78 2.43 1.26 0.62 0.54 0.73 1.62
P 3.90 7.58 15.85 21.59 30.35 36.75 40.48 41.97 43.14 44.14

ρ = 0.5
Q 23.87 21.63 18.18 15.36 10.05 5.55 2.98 2.47 2.78 4.43
K 24.20 21.70 18.10 15.24 9.81 5.07 2.26 1.42 1.20 1.77

Qs 21.58 18.01 15.17 9.74 4.99 2.08 1.23 0.85 1.20
P 15.25 6.00 5.57 7.17 10.91 14.17 16.32 17.16 17.87 18.46

ρ = 0.75
Q 53.73 48.66 40.69 34.41 22.30 11.89 5.43 3.61 2.67 2.57
K 54.50 48.84 40.65 34.28 22.03 11.35 4.71 2.65 1.33 0.95

Qs 48.61 40.58 34.15 21.98 11.29 4.64 2.55 1.23 0.73
P 39.12 16.08 6.82 4.26 2.64 2.74 3.25 3.46 3.65 3.79
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Correlation signature plot (Heston with microstructure
issues)
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Heston with microstructure issues

Table 5: Mean squared errors of correlation estimators on returns contaminated
by rounding error and asynchronous trading (×10−2).

S 1 5 10 15 30 60 120 240 420 840
ρ = 0.25

Q 6.05 5.61 5.01 4.41 3.45 2.53 2.21 2.91 4.60 8.68
K 6.09 5.60 4.92 4.32 3.20 2.09 1.47 1.53 2.23 4.15

Qs 5.58 4.87 4.27 3.09 1.91 1.10 0.85 1.16 2.43
P 6.11 5.59 4.90 4.28 3.14 2.00 1.38 1.40 1.95 3.52

ρ = 0.5
Q 24.12 22.28 19.50 17.09 12.58 8.10 5.03 3.73 4.34 6.79
K 24.37 22.33 19.39 16.94 12.18 7.50 4.20 2.59 2.40 3.37

Qs 22.27 19.37 16.97 12.21 7.44 3.91 2.01 1.50 2.02
P 24.42 22.30 19.30 16.82 11.92 7.23 3.98 2.46 2.25 2.97

ρ = 0.75
Q 54.27 50.07 43.57 38.11 27.54 17.12 9.35 4.99 3.66 4.39
K 54.84 50.17 43.38 37.81 26.88 16.12 8.34 4.03 2.59 2.39

Qs 50.05 43.44 38.04 27.22 16.44 8.36 3.77 2.02 1.45
P 54.94 50.10 43.22 37.50 26.30 15.43 7.90 3.84 2.52 2.16

T = 23400 in 5000 replications.
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Empirical
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Data Description

22 stocks:

• S&P 500 constituents

• 11 industry sectors

• Sampled from Jan 1, 2015 till Dec 31, 2021

• Transaction data from NYSE Trade and Quote (TAQ) database
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Descriptive summary

Table 6: Descriptive statistics for the selected S&P 500 stocks and S&P 500 ETF.

Sector Ticker N E [τi − τi−1] #Zero σ̂2
ε

ˆIV

SPY 12056 2.275 3488 1.71 × 10−9 6.57 × 10−5

Utilities
D 3137 8.037 1114 1.92 × 10−8 1.37 × 10−4

DUK 3329 7.467 1132 1.32 × 10−4 1.35 × 10−4

Real estate
AMT 2492 9.754 476 3.92 × 10−6 4.9 × 10−4

PLD 2606 9.771 879 3.16 × 10−8 1.69 × 10−4

Materials
LYB 2804 9.226 664 5.28 × 10−8 3.33 × 10−4

NEM 4056 6.670 1659 3.55 × 10−8 3.77 × 10−4

Information Technology
AAPL 11706 2.271 3067 6.19 × 10−9 1.86 × 10−4

AMD 6139 14.865 2134 2.70 × 10−7 8 × 10−4

Industrials
AAL 4088 6.829 1692 5.43 × 10−8 7.42 × 10−4

UNP 3715 6.862 868 2.40 × 10−8 1.85 × 10−4

Health Care
JNJ 5523 4.571 1721 8.58 × 10−9 1.08 × 10−4

MRK 5119 5.054 2090 1.11 × 10−8 1.37 × 10−4

Financials
JPM 7977 3.217 2887 8.76 × 10−9 1.78 × 10−4

WFC 5772 4.495 2689 1.29 × 10−8 2.28 × 10−4

Energy
HAL 4591 5.564 2074 4.79 × 10−8 6.08 × 10−4

XOM 6794 3.831 2753 9.94 × 10−9 2 × 10−4

Consumer Staples
PG 5271 4.857 1962 8.44 × 10−9 1.09 × 10−4

WMT 5654 4.461 2116 8.47 × 10−9 1.18 × 10−4

Consumer Discretionary
TSLA 7485 5.121 557 5.17 × 10−8 7 × 10−4

AMZN 5869 5.028 393 2 × 10−8 2.11 × 10−4

Communication Services
DIS 6273 4.193 1819 1.01 × 10−8 1.71 × 10−4

FB 9225 2.805 1891 1.01 × 10−8 2.38 × 10−4
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Information Technology: correlation estimates
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Materials: correlation estimates

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Sampling interval(×60)

0.2

0.3

0.4

0.5

0.6

SPY v.s. LYB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Sampling interval(×60)

0.05

0.10

0.15

0.20

SPY v.s. NEM

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Sampling interval(×60)

0.05

0.10

0.15

0.20

0.25

0.30

LYB v.s. NEM

Q
K
P
Q

Yiyao Luo (UNC-Chapel Hill) November 18, 2022 48 / 61



Market β

Recall Capital Asset Pricing Model (CAPM):

Eri = rf + β(ER − rf )

where

• Eri : expected return on asset i

• rf : risk-free rate

• ER: expected market return

Andersen, Thyrsgaard, and Todorov (2021) (ATT) demonstrate variation
in β within a trading day.
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Intraday time-varying β

10:00 10:30 11:00 11:30 12:00 12:30 13:00 13:30 14:00 14:30 15:00 15:30 16:00

1.05

1.10

1.15

1.20

1.25

(a) CAT v.s. SPY

10:00 10:30 11:00 11:30 12:00 12:30 13:00 13:30 14:00 14:30 15:00 15:30 16:00

0.4

0.5

0.6

0.7

0.8

(b) JNJ v.s. SPY

Figure 16: Average intraday β’s for 1 minute returns of stocks, Caterpillar and
Johnson&Johnson, over years 2015 - 2021. β’s are estimated using 30-minute
window.
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Intraday time-varying β

Let Yt and Xt be prices of asset of interest and market respectively.
ATT estimates intraday βτ ’s using window over lS seconds, for
τ = l , . . . , n

βτ =

∑τ
i=τ−l+1 ∆SXiS∆SYiS1{|∆SXiS |≤vx ,|∆SYiS |≤vy}∑τ

i=τ−l+1 ∆SX
2
iS1{|∆SYiS |≤vy ,|∆SXiS |≤vx}

where

• ∆SXiS = XiS − X(i−1)S and ∆SYiS = YiS − Y(i−1)S

• vx and vy are thresholds to avoid jumps.
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Intraday correlation

Note
βτ = ρτ ×

σy ,τ
σx ,τ

• ρτ is the correlation between asset Y and market X , estimated with
Quadrant, Kendall, subsampled Quadrant, and Pearson.

• Subsampled Quadrant uses all possible returns over S sampling
intervals

∆SXi = Xi − Xi−S and ∆SYi = Yi − Yi−S

for i = (τ − l + 1)S , . . . , τS .
• Quadrant, Kendall, and Pearson use non-overlapping returns over S

sampling intervals.
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Intraday relative volatility

• σy,τ
σx,τ

is the relative volatility between asset Y and market X .

• Realized variance:√∑τ
i=τ−l+1 ∆SY 2

iS1{|∆SXiS |≤vx ,|∆SYiS |≤vy}∑τ
i=τ−l+1 ∆SX 2

iS1{|∆SXiS |≤vx ,|∆SYiS |≤vy}

• Local relative volatility:∑τS
i=(τ−l+1)S |∆SYi |1{|∆SYi |≤vy ,|∆SXi |≤vx}∑τS
i=(τ−l+1)S |∆SXi |1{|∆SYi |≤vy ,|∆SXi |≤vx}

Figure
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Intraday time-varying β
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(b) AMD v.s. SPY

Figure 17: Average β estimates by time of day using returns in the previous
one-hour window with S = 180.
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Intraday time-varying correlation
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(b) AMD v.s. SPY

Figure 18: Average β estimates by time of day using returns in the previous
one-hour window with S = 180.

Relative volatility
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Intraday time-varying β
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(b) NEM v.s. SPY

Figure 19: Average β estimates by time of day using returns in the previous
one-hour window with S = 180.
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Intraday time-varying correlation
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(b) NEM v.s. SPY

Figure 20: Average β estimates by time of day using returns in the previous
one-hour window with S = 180.
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Positive Definiteness Correction
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High dimensional case (d > 2)

• Estimate correlation matrix by plugging bivariate correlations with
Quadrant, Kendall, Subsampled Quadrant estimators

• Cannot guarantee positive definiteness

• Compare four correction methods

Yiyao Luo (UNC-Chapel Hill) November 18, 2022 59 / 61



Correction for positive definiteness

• Higham’s method algorithm (Higham (2002)): find the nearest valid
correlation matrix in terms of Frobenius norm by projection.

• Quadratically convergent Newton method: see Qi and Sun (2006).

• Maximization of composite quasi-likelihood:
• Composite quasi-likelihood of a correlation matrix C based on matrix

estimate R̂ is defined as follows

QLikecomp(C) = −1

2

∑
i<j

log(1− C2
ij)−

∑
i<j

1− R̂ijCij

1− C2
ij

.

• We find the nearest correlation matrix to R̂ by

max
γ∈Rd(d−1)/2

QLikecomp(C (γ)), where γ = vech(log(C ))

C is recovered from a given γ using the result in Archakov and Hansen
(2021).

Appendix
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Conclusion

• Introduce robust correlation estimator, subsampled Quadrant
estimator.

• Subsampled Quadrant estimator is most accurate while facing
microstructure issues and is consistent as Quadrant in time-varying
volatility models.

• Quadrant, Kendall, and subsampled Quadrant estimators are more
robust to the presence of jumps.

• Empirically, find different converging patterns between Quadrant like
correlation estimates and others as lowering sampling frequency and
compare the estimated intraday time-varying β.
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Example

X1 = 101.005, X2 = 101.001, X3 = 100.998

then
log(X1)− log(X2) > log(X2)− log(X3)

After rounding

X ∗1 = 101, X ∗2 = 101, X ∗3 = 100.99

and
log(X ∗1 )− log(X ∗2 ) = 0 < log(X2)∗ − log(X ∗3 )

back
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Linear statistics defined on subseries

Consider subseries Zi = (Xi , . . . ,Xi+m−1) and suppose that Ti = t(Zi ) is
an estimate for some parameter in the distribution of Xi ’s.
To approximate the distribution of T̄N =

∑N
i=1 Ti/N, we may apply

bootstrap resampling on {Ti}Ni=1 as applied in the moving blocks sampling
scheme by Künsch (1989), Liu and Singh (1992), and Politis and Romano
(1993).
Suppose that Ti (ω) is the periodogram evaluated at ω based on data Zi ,
then T̄N(ω) is approximately equal to Bartlett’s Kernel estimate of f (ω).

back
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Intraday relative volatility

(a) CAT v.s. SPY (b) JNJ v.s. SPY

Figure 21: Plot the average intraday relative volatility for 1 minute returns of
stocks, Caterpillar, Johnson&Johnson, and market, S&P 500, over year 2015 till
2021. Relative volatility is estimated using 30-minute window.

back
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Intraday relative volatility
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Intraday relative volatility
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Correction for positive definiteness

• Higham (2002)’s algorithm:
Define sets

S = {A = A′ ∈ Rd×d : A is p.s.d.},
U = {A = A′ ∈ Rd×d : aii = 1}.

Project a symmetric matrix A onto U with respect to W -norm:

PU(A) = A−W−1diag(θi )W
−1

where θ = (W−1 ◦W−1)−1diag(A− I ).
Project A onto S with respect to W -norm:

PS(A) = W−1/2[(W 1/2AW 1/2)+]W−1/2

where A+ = Qdiag(max(λi , 0))Q ′.
To find the nearest matrix to A at the intersection of S and U, we
repeat the operation

A← PU(PS(A)).
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Correction for positive definiteness

• Quadratically convergent Newton method:
Using this method to solve problem:

min
1

2
||R̂ − C ||2

s.t. C ∈ C = S ∧ U

where || · || denotes the Frobenius norm, see Qi and Sun (2006).

• Using the similar method to solve the problem of H-weighted type:

min
1

2
||H ◦ (R̂ − X )||2

s.t. C ∈ C

where ◦ denotes the Hadarmard product, and H is symmetric with
nonnegative entries.
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Correction for positive definiteness

• Example: Consider d = 5,

R0 =


1

0.098 1
0.288 0.729 1
0.593 −0.504 −0.031 1
0.314 −0.244 −0.543 −0.157 1

 , eig =


0.0005
0.121
1.132
1.651
2.097



R̂Q =


1

0.044 1
0.309 0.675 1
0.657 −0.525 0.044 1
0.249 −0.200 −0.593 −0.181 1

 , eig =


−0.002
0.101
1.087
1.775
2.038


Higham’s algorithm:

R̂Higham =


1

0.019 1
0.306 0.675 1
0.653 −0.525 0.044 1
0.246 −0.200 −0.593 −0.181 1

 , eig =


0.010
0.100
1.076
1.774
2.040


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Correction for positive definiteness

• Example (cont’):

R0 =


1

0.098 1
0.288 0.729 1
0.593 −0.504 −0.031 1
0.314 −0.244 −0.543 −0.157 1

 , eig =


0.0005
0.121
1.132
1.651
2.097



R̂Q =


1

0.044 1
0.309 0.675 1
0.657 −0.525 0.044 1
0.249 −0.200 −0.593 −0.181 1

 , eig =


−0.002
0.101
1.087
1.775
2.038


Maximizing composite QLike:

R̂comp. =


1

0.044 1
0.309 0.675 1
0.656 −0.525 0.045 1
0.248 −0.199 −0.593 −0.180 1

 , eig =


0.0001
0.101
1.086
1.775
2.038


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Correction for positive definiteness

Table 7: Comparison the accuracy and computation costs of corrected Quadrant
and Kendall estimators via four methods (n = 5)

Loss/Time Higham Comp. QLike Newton H-Newton
Quadrant

Frobenius 0.0856 0.0841 0.0839 0.0840
Stein’s 4.6339 4.1876 4.2304 4.2322

Time (sec) 0.0569 6.7361 0.0007 0.0026
Kendall

Frobenius 0.0573 0.0533 0.0533 0.0533
Stein’s 4.2331 0.8381 0.9210 0.9210

Time (sec) 2.1019 6.9426 0.0005 0.0018
Pearson

Frobenius 0.0504
Stein’s 0.1648

Frobenius norm: ||A||F =
√∑

i,j a
2
i,j .

Stein’s loss function: L(R̂) = tr(R−1
0 R̂)− log(|R−1

0 R̂|)− d .
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